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Abstract-Love waves propagating over the surface of a half-space covered by a layer of different
diatomic materials are examined. After establishing the associated constitutive equations the equa­
tions of motion are derived, and the coefficients of the wave attenuation normal to the direction of
propagation found. Fulfillment of the boundary conditions at a free surface and the interface leads
to a dispersion equation in the form of a vanishing determinant of the sixth order. To obtain more
tangible results, an example involving relaxed bonds between the constituents of the diatomic
materials is given, and illustrated by a graph displaying the dependence of the phase velocity on the
wave number in the first wave mode.

1. INTRODUCTION

The idea that a bare homogeneous continuum may serve as a model of a real material was,
and still is, so successful in practical applications that, only after the advent of such highly
nonhomogeneous materials as composites, the developers of mechanics started to give
serious consideration to the internal, discreet, structure of matter.

The modern efforts to incorporate some kind of microstructure into the traditional
classical model were to a great extent inspired by the renowned treatise of Truesdell and
Toupin (1960), in which among others the forgotten concept of the couple stress was
comprehensively analysed.

First, the theory of polar media, most of all in the writings of Mindlin (e.g., 1964)
and Eringen (e.g., 1968), was developed. In this model, known as a micropolar and a
micromorphic one, to the material particles is ascribed some freedom of motions inde­
pendent of the motions of the body as a whole.

Independently, Green and Rivlin (1964) proposed a theory of great generality. It
includes concepts of higher order gradients of deformation and velocity as well as of
multipolar forces,

A third line of refining the classical model involved the idea of the nonlocal particle
interactions. This concept novel in Mechanics of Materials was, of course, a household
word in atomic physics, in particular in the Lattice Dynamics of Born and Karman in which
the classical elasticity was derived from purely atomistic assumptions. The nonlocal aspect
of continuum was discussed by Kroener (1969), Eringen (1974) and Kunin (1988) among
others.

In a somewhat different direction progressed the paper by Demiray (1973) on mech­
anics of polyatomic bodies. In this model a particle is composed of several subparticles
(atoms, say). The subparticles interact with each other and have different thermomechanical
characteristics. They overlap in initial positions but are carried by the deformation into
different spatial positions. In detail Demiray's theory was derived for a diatomic body.

In recent years combinations of particular models were suggested; for example, amal­
gams of nonlocality with micropolarity (Eringen, 1976), polyatomicity (Demiray, 1977)
and viscoelasticity (Ahmadi, 1975; Nowinski, 1986), respectively, as well as with poly­
atomicity and viscoelasticity (Demiray, 1982).

In the present paper Love waves propagating over a layer covering a half-space of
different diatomic materials are examined. After establishing the associated constitutive
equations, the equations ofmotion are derived, and the coefficients of the wave attenuation
normal to the direction of propagation found. Fulfillment of the boundary conditions at a
free surface and the interface leads to a dispersion equation in the form of a vanishing
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determinant of the sixth order. To obtain more tangible results an example involving relaxed
bonds between the constituents of the diatomic materials is given and illustrated by a graph
depicting the dependence of the phase velocity on the wave number in the first wave mode.

2. FUNDAMENTAL EQUATIONS

Consider a half-infinite space referred to a Cartesian coordinate system XI>X2,X3 such
that the XIX3 plane coincides with the plane boundary of the half-space, and the xraxis
points into the interior of the half-space. The latter is covered by an infinite layer ofthickness
h, the material of which differs from the material of the half-space. Both materials, of the
layer (marked L), and of the half-space (marked S), are assumed to be elastic, isotropic,
homogeneous and of the diatomic structure. The two constituents of each material are
designated by the index in parentheses, (1) or (2).

Imagine now a plane surface wave propagating over the structure in question in
the x I-direction so that all kinematic and dynamic quantities involved are automatically
independent of the coordinate X3' The wave is assumed to be a horizontally polarized shear
wave, so that u\«) = u~«) == 0 and

(1)

Here (X = 1,2, F(<<) is a function of X2 to be determined later, k is the wave number, tis
the time and ill is the circular frequency. If this is so, then the only not identically vanishing
strain components are e~«1 = e~«l = ~U~~)2 and e~«1 = e\«1 = ~u~~\, where the comma denotes
a partial coordinate differentiation (e.g. U3,2 = OU3(X" X2)/OX2)'

In the context of the diatomic theory the only not identically vanishing components
of the (asymmetric) stress tensors are

rW a2u~~)1 +a6u~:{ +a7(u~~\ -u~:\),

rW = a2u~~\ +a6u~:\ +a7(u~:\ -u~~D,

rW a2u~:~ +a6u~:~ +a7(u~~~ -u~:D,

rW = a2u~~~ +a6u~:~ +a7(u~:~ -u~~D,

rW = a4u~:\ +a6u~~\ +a7(u~:\ -u~~D,

r(2) = a u(2) +a d l) +a (d 2) -u(l),32 4 3.2 6 3,2 7 3,2 3,2 .

where a denotes material coefficients.
The equations of motion are now

(I) (I)+R - 0rkl,k - Pial 1-,

(2) (2)+R - 0rkl,k - P2G, ,-,

(2)

(3)

with G/ as the acceleration, R/ = (uP) - uP»Go as the rate of momentum transfer between
the constituents (or the mutual force), ao as a coefficient and P as the mass density.t

In the case under consideration we have

tThe significance of R, (or ao, respectively) is discussed by Demiray (1973).
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so that substitution of eqns (2) into (4) gives after some manipulations,

b/VU~I)+bsVU~2)+bo(U~2)-U~I»-Plii~1)= 0,

b6VU~2) +bsVu~1) +bO(U~I) - U~2» - P2ii~2) = 0,

where
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(4)

(5)

and the overdot denotes time differentiation. It is of interest to observe the correspondence
existing between the material diatomic coefficients and their classical Lame counterparts
(Table 1). It is apparent from Table 1 [cf. also Nowinski (1989)] that the diatomic
coefficients of Group I play the roles of the Lame shear moduli and reduce to the latter if
the interactions between the constituent media are severed. The interaction coefficients of
Group II on the other hand are absent in the classical approach, and by suppressing them
one arrives at the classical counterparts of eqns (2) through (5).

Taking advantage of the eqn (1) it is a straightforward matter to decouple the field
equations (5), and arrive at the following differential equations:

F~4122+2IF~g-22F(l)= 0,

F~i122 +23F~i1- 24F(2) = 0,

with the notation

2 - ~ + /12 _ ~ 2
2

=~ + d/12
I - bs/11 /11 b s ' b S/11 bs/1I'

)03 =~ + /14 _~, 24 =~ + d/14,
bs/13 /13 bs bs/13 /13

b4b6-b~ bsd-b6Cl b4b6-b~
/11 = /12 = /13 =b6d-b sC2' b6d-b sC2' b4d-b sCl'

bsd-b4C2 2 2 2 2
/14 = b db' CI = b4k +bO-PIW, C2 = b6k +bO-P2W ,

4 - SCI

(6)

Solutions to eqns (6) appropriate for the purposes at hand are: for the first constituent of
the layer,

Table 1. Diatomic and monoatomic coefficients

Group Diatomic coefficients

I. Constitutional coefficients a2

a.
II. Interaction coefficients a6

a7
ao

Monoatomic moduli
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(8a)

for the second constituent of the layer,

where

a
2 = [W·\ ±JAf+ 4A 2W12

,

b2 = WA3 ±~i~+4j~)J 112.

(8b)

(9)

Ai and B, (i = 1,2) are constants to be determined later, and for the sake of argument we
assume that the coefficients a and b are real and positive.

3. BOUNDARY CONDITIONS

At this stage it is necessary to consider the boundary conditions. Before doing this it
is convenient to write down the equations for the displacements, both in the layer and in
the half-space, in the form consistent with the physical aspects of the problem. The latter­
as it is well known-require concentration of the wave energy in the layer, and a rapid
decay of the motions in the half-space.

In this connection we assume that:

In the layer, (-h ~ X2 ~ 0)
First constituent

Second constituent

(10)

In the half-space, (0 ~ X2)

First constituent

Second constituent

(11)

We note that in the problem in hand the surface X2 = -h is free from load, and at the
common boundary, X2 = 0, of the layer and the half-space, the continuity of the stresses
and the displacements is to be secured. Since the only stress component acting in the planes
perpendicular to the x2-axis is the component '23, we have

'~3 = '~3

u~ = u~
at X2 = 0,

(12a)

(12b)

(l2c)

for all values of Xl and t.
It should be clear that in the problem examined the existence of six unknown

coefficients, that is, of A~, A~, B~, B~, C~ and C~, stipulates the existence of six boundary
conditions. This can be done if we demand the three conditions (12) to be obeyed by each
constituent of the materials of the layer and the half-space. The catch here, however, is that
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there is no unique way to satisfy the last named requirement with regard to the conditions
(l2b) and (l2c). For example, one may demand that

T(I)l - T~I)S U)l)l = U)l)S,23 - 3,
X2 = O.at

and TW
l = TW

S
, U)2)l = U)2)S, (l3a)

One may also demand that

T( I)l - TS2)S U~l)l = U~2)S,23 - 3,
X2 = 0,at

and rS
21l = rW

s
, U)2)L = U)I)S, (l3b)

or one may select another combination, different from those given above.t In what follows
we adhere to the scheme (13a), and as a result the set of boundary conditions becomes

for the first component of the layer,t

(14a)

for the first components of the layer and the half-space

A~+B~ = ct (l4b)

(a~ -a~)(-aLA~+aLB~)+(a~ +a~)(-blA~+bLBD

+(a~-a~)asC~+(a~-a~)bsC~= 0; (14c)

for the second component of the layer,

(15a)

for the second components of the layer and the half-space,

A~+B~ = C~, (l5b)

(a~-a~)(-bLA~+bLB~)+(a~+a~)(-alA~+alBT>

+(a~-a~)bsC~+(a~+a~)asC~= O. (l5c)

It goes almost without saying that the existence of a nontrivial solution of the foregoing
system of six linear and homogeneous algebraic equations in six unknown coefficients
implies vanishing of the principal determinant of the system. This means that

tThis is not the only peculiar feature of the diatomic theory. There is, for instance, also no unique way of
selecting the strain measures, so that all measures consistent with the principle of objectivity are admissible Icf.
Demiray (1982)].

t It is recalled that aL and bL (as and bs) denote the coefficients (9) for the 1st and 2nd components of the
layer (of the half-space), respectively.
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mil ml2 ml3 ml4 0 0

0 0 -1 0

m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 0 0
=0, (16)

0 0 0 -1

m61 m62 m63 m64 m65 m66

where

m l4 = (a~+a~)bLe-ibLh, m 44 = -(a~+a~)bLe-ibLh,

m 31 = -(a~-a~)aL' m 61 = -(a~+a~)aL'

m32 = (a~-a~)aL' m 62 = (a~+a~)aL'

m 33 = - (a~ -a~)bL' m63 = - (a~ +a~)bL'

m34 = (a~ +a~)bL' m64 = (a~ +a~)bL'

m35 = (a~-a~)as, m65 = (a~+a~)as,

m 36 = (a~ +a~)bs, m66 = (a~ -a~)bs.

It is not difficult to convince oneself that, generally speaking, eqn (16) implicitly relating
the wave number, k, to the wave frequency, W, manifests the dispersive character of
the wave motion. Thus, Love waves in diatomic media, exactly like their monoatomic
counterparts, turn out to be subject to dispersion. It need hardly be added, however, that
due to the intricacy of the dispersion equation (16) as well as to the presence of a great
number of little known material coefficients a general analysis of the equation would not
only present serious computational difficulties, but along with this would obscure rather
than clarify the main points of the problem.

In this connection, in the illustrative example examined in the subsequent section we
wish to consider a somewhat simplified model of the diatomic material. It is defined as
follows:

(a) There exist relatively weak bonds between the constituents, such that the coefficients

(17a)

and the remaining bond coefficient bo is such that

(17b)

This means that the only intrinsic bond retained is the one that is associated with the
transfer of momentum between the constituents, and its value is limited to the term of the
first order.

(b) The particular bond coefficients as well as the mass densities are respectively equal.
This means that
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HI = b~2 = b~l = b~2 = bo,

PT = P~ = P~ = p~ = p.

(c) The associated shear moduli a~, a~, a~ and a~, are all different.
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(18a)

(18b)

4. ILLUSTRATIVE EXAMPLE

With the restrictions (a) through (c) listed in Section 2 in mind we set a6 = a7 = 0, and
from the relations (16) find that coincidentally m13 = m l 4 = m33 = m34 = m36 = m41 =
m42 = m61 = m62 = m65 = O. This being so, eqn (16) splits into two separate dispersion
equations

(19)

and

(20)

which connect (as already mentioned) the phase velocity c = w/k with the wave number, k
(or wavelength, = 2n/k). It is not difficult to verify that if the diatomic medium becomes
converted into the classical monoatomic one, then both conditions (19) and (20) reduce to
the well-known and extensively discussed Love's equation [cf. H. Nowinski (1986) eqn
(4.212)t].

In order to determine the quantities aL, bL and as, bs it is more convenient to go back
to eqns (5). We easily find that as regards the layer there is for both its first and second
constituents

(21a)

where

(21b)

Again, as regards the half-space

(22)

where

(23a)

Also

(23b)

A simple calculation with the assumptions (18) and (19) in mind yields two values of the
exponents aL and as, respectively, in particular,

t See also the remarks following eqn (27).
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(24a)

We introduce the notation defining the wave quasi-frequency, Q, by

so that w 2 = Q2+bo/p. We rewrite eqns (24) in the form

where

(24b)

(25)

(26a)

(26b)

(C*)2 = Q2/k2, Cu = (a~/p)J!2, CL2 = (a~/p)I!2, CSJ = (a~/p)JI2, CS2 = (a~/p)I!2.

(26c)

We observe that the last four relations define the wave velocities in the material of the first
and second constituents of the layer and the half-space, respectively. This completes the
solution of the problem, and with all the preliminaries out of the way we are now in a
position to write down the dispersion equations (19) and (20) in the following final form:

(27a)

(27b)

It is immediately seen that in this form the dispersion equations (27a) and (27b) do
not structurally differ from those of the classical elasticity, and some of the conclusions
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Fig. I. Square of the relative velocity versus the nondimensional wave number.

drawn in the monoatomic case may, therefore, be repeated mutatis mutandis in the diatomic
case.

(1) First, that the real values of the velocity c* lie in the intervals CLl < c* ~ CSI and
CL2 < c* ~ CS2, where the actual bounds depend on the relative values of the material moduli
a~, a~, a~ and a~.

(2) Second, because of the periodicity of the tangent function there exists an infinite
number of wave modes.

In other respects the diatomic case differs radically from its monoatomic counterpart.
First, as already noted in Section 2, there is no unique solution to the given problem in as
much as the boundary conditions may be formulated in different ways. Second, for the
material in question the dispersion curve in each particular mode may possess up to four
distinct branches. This is in contrast to the classical elasticity in which a unique dispersion
branch exists.

Figure I illustrates one case of the dependence of the square of the actual relative
velocity, C/CLl' on the nondimensional wave number kh for several values of the bond
parameter b~ = boh2/a~, all for the fixed ratio a~/a~ = 1.5. It is seen that the existence of
the interatomic bond symbolized by the coefficient bo radically changes the course of the
curves, and makes the wave velocity become unbounded as the wave number tends to zero.
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